18 research outputs found

    Efficient Image Registration using Fast Principal Component Analysis

    Get PDF
    Incorporating spatial features with mutual information (MI) has demonstrated superior image registration performance compared with traditional MI-based methods, particularly in the presence of noise and intensity non-uniformities (INU). This paper presents a new efficient MI-based similarity measure which applies Expectation Maximisation for Principal Component Analysis (EMPCA-MI), to afford significantly lower computational complexity, while providing analogous image registration performance with other feature-based MI solutions. Experimental analysis corroborates both the improved robustness and faster runtimes of EMPCA-MI, for different test datasets containing both INU and noise artefacts

    Multimodal retinal image registration using a fast principal component analysis hybrid-based similarity measure

    Get PDF
    Multimodal retinal images (RI) are extensively used for analysing various eye diseases and conditions such as myopia and diabetic retinopathy. The incorporation of either two or more RI modalities provides complementary structure information in the presence of non-uniform illumination and low-contrast homogeneous regions. It also presents significant challenges for retinal image registration (RIR). This paper investigates how the Expectation Maximization for Principal Component Analysis with Mutual Information (EMPCA-MI) algorithm can effectively achieve multimodal RIR. This iterative hybrid-based similarity measure combines spatial features with mutual information to provide enhanced registration without recourse to either segmentation or feature extraction. Experimental results for clinical multimodal RI datasets comprising colour fundus and scanning laser ophthalmoscope images confirm EMPCA-MI is able to consistently afford superior numerical and qualitative registration performance compared with existing RIR techniques, such as the bifurcation structures method

    Why finance professors should be teaching Nietzsche

    Get PDF
    <p><strong>Abstract:</strong> Retinal images (RI) are widely used to diagnose a variety of eye conditions and diseases such as myopia and diabetic retinopathy. They are inherently characterised by having nonuniform illumination and low-contrast homogeneous regions which represent a unique set of challenges for retinal image registration (RIR). This paper investigates using the expectation maximization for principal component analysis based mutual information (EMPCA-MI) algorithm in RIR. It combines spatial features with mutual information to efficiently achieve improved registration performance. Experimental results for mono-modal RI datasets verify that EMPCA-MI<br>together with Powell-Brent optimization affords superior robustness in comparison with existing RIR methods, including the geometrical features method.</p> <p><br><strong>Index Terms</strong>— Image registration, principal component analysis, mutual information, expectation-maximization algorithms, retinopathy.</p> <p> </p> <p><strong>Poster presented at</strong>: 38th International Conference on Acoustics, Speech, and Signal Processing<br>(ICASSP), 26th to 31st May 2013, Vancouver, Canada.<br>doi: 10.1109/ICASSP.2013.6637824</p

    Robust Image Registration using Adaptive Expectation Maximisation based PCA

    No full text
    <p>Images having either the same or different modalities can be aligned using the systematic process of image registration. Inherent image characteristics including intensity non-uniformities in magnetic resonance images and large homogeneous<br>non-vascular regions in retinal and other generic image types however, pose a significant challenge to their registration. This paper presents an adaptive expectation maximisation for principal component analysis with mutual information (aEMPCA-MI)<br>similarity measure for image registration. It introduces a novel iterative process to adaptively select the most significant principal components using Kaiser rule and applies 4-pixel connectivity<br>for feature extraction together with Wichard’s bin size selection in calculating the MI. Both quantitative and qualitative results on a diverse range of image datasets, conclusively demonstrate<br>the superior image registration performance of aEMPCA-MI compared with existing MI-based similarity measures.</p
    corecore